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FOREWORD

This report constitutes a part of the work done on the research
project entitled "Determination of Atmospheric Pollutants from Infrared
Radiation Measurements.'" The work was supported by the NASA - Langley
Research Center (Atmospheric Systems Branch of the Atmospheric Environ-
mental Sciences Division) through Grant NSG 1282. The grant was monitored

by Dr. Henry G. Reichle, Jr.
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ACCURATE SPECTRAL MODELING

FOR INFRARED RADIATION

S. N. Tiwari* and S. K. Gupta+

SUMMARY

Direct line-by-line integration and quasi-random band model techniques
are employed to calculate the spectral transmittance and total absorptance
of 4.7u €O, 4.3u CO,, 15U CO,, and 5.35u NO bands. Results are obtained
for different pressures, temperatures and path lengths. These are compared
with available theoretical and experimental investigations. For specific
pressure, temperature, and path length conditions, experimental results for
total absorptance are also available in the literature for the gases under
present investigation. For exactly the same conditions, total absorptance
was also calculated by employing the line-by-line and quasi-random band
models and the continuous correlations of Tien and Lowder, Cess and Tiwari
and Felske and Tien. For each gas, extensive tabulations of results are
presented for comparative purposes. In almost all cases, line-by-line
results are found to be in excellent agreement with the experimental values.

The range of validity of other models and correlations are discussed.

X -+
Professor, 'Research Associate, School of Engineering, 0ld Dominion
University, Norfolk, Virginia 23508.
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1. INTRODUCTION

In radiative transfer analyses, involving infrared active molecules, it
often becomes essential to employ meaningful, computationally fast and accurate
spectral models for absorption by the absorbing-emitting molecules. The most
accurate theoretical procedure to compute the absorptance of a vibration-
rotation band is probably the direct integration (line-by-line) method. This
employees an appropriate line profile (Lorentz, Doppler, Voigt, etc.) for the
given pressure and temperature conditions, and calculates absorption at a large
number of frequencies within the spectral range of interest. Although it
requires the knowledge of individual line parameters and involves lengthy cal-
culations, the line-by-line method is quite reliable.

Several "nmarrow" and ''wide'" band models and band model correlatioms for
infrared spectral absorption have been proposed in the literature [1-17]%*.
Narrow band models (viz., Elsasser, statistical, random-Elsasser, and quasi-
random) can be used for spectral absorptance computations when high resolution
is not required. Although the use of these models results in considerable
reduction of computational time, the results, in general, have lower degree of
accuracy than those obtained by the line-by-line method [19-21]. The quasi-
random band model, introduced by Wyatt et al. [6], is the best among the narrow
band models to represent the absorption of a vibration-rotation band accurately.
In many engineering applications involving a single absorbing-emitting gas,
quite often it is possible to make use of the so-called wide band models [8-13].
The relations for total band absorptance of a wide band are obtained from the
absorptance formulations of the narrow bands by employing an exponential varia-
tion of the line intensities. As such, these models are called the exponential

wide band models. In addition, several correlations for the total band

*Numbers in brackets indicate references.



absorptance of a wide band are available in the 1iterature'[8—l7]. For some
gases, these correlations satisfactorily represent the band absorptance over
certain ranges of physical conditions. Results of various wide band models
and correlations were compared in [16-18]. It was noted that different band
models and correlations predict the total absorptance of a band with varying
degree of accuracy. Recently, attempts have also been made to express band
absorptance relations directly in terms of the basic spectroscopic variables
[22-24]. All these results indicate that while a particular formulation (band
model relation or correlation) may be applicable to linear molecules, it may
give erroneous results when applied to asymmetric or spherical top molecules.
The purpose of this study is to calculate the spectral transmittance and
total band absorptance of 4.7u CO, 4.3u CO,, 15U COz2, and 5.35u NO bands by
employing the direct line-by-line integration and quasi-random band model
techniques. Specific results are obtained for the temperature, pressure,
and path length conditions for which experimental measurements are available.
Various theoretical and experimental results are compared in order to establish
the validity of a particular formulation to specific applications. General
results for total band absorptance are obtained for different temperatures,
pressures, and path lengths, and these are compared with the results of

various correlations.



2. GOVERNING EQUATIONS

For a homogeneous path, the spectral absorptance, aw , at wavenumber

is defined as

o, = 1- T, = 1- exp(—Kw X) (2.1)

where Tw represents the spectral transmittance, Ky is the volumetric
absorption coefficient, and X = py 1is the pressure path length. The total

(integrated) band absorptance, over a spectral interval Aw , is given by

A=f o1 dw=f [l-exp(-x X)] dw (2.2)
Ao Aw w

The total band absorptance of a wide band, in turn, is given by

A= f [l—exp(—Kw X) 1] d(ul-wo) (2.3)

-0

where the limits of integration are over the entire band pass and W, is the
wavenumber at the center of the wide band.
For the present study, it is convenient to define the integrated band
absorptance in a nondimensional form as
K=/ (2.4)
where Ao is the band width parameter [9-12]. Also, the optical path length
is defined as

u=S_§ X/A0 =8 py/Ao (2.5)

where S represents the integrated band intensity.

Various theoretical formulations of narrow and wide band models are
reviewed in [11-13,16,17]. The wide band correlations, whose results are
compared in this study, are discussed here briefly. A three-piece correlation
was introduced first by Edwards and Menard [8,9]. The first continuous cor-

relation was proposed by Tien and Lowder [10,11], and this is of the form



A(u,B) = n(u £(){(u + 2)/[u + 2£(t)]} + 1) (2.6)

where
£(t) = 2.94[1-exp(-2.60 t)] , t = B/2 , B = 2my /d

A continuous correlation introduced by Cess and Tiwari is given by

1/2})

A(u,B) = 2 2n(l + u/{2 + [u(c + 7/28)] (2.7)

Different values for constant ¢ in Eq. (2.7) are suggested in [16,17].
If it is desired to use only one value of c¢ for all £ and path lengths, the
value of ¢ = 0.1 1is recommended. Felske and Tien [14] have proposed a con-

tinuous correlation of the form

A(u,B) = 2 E;(tp ) + E (o /2) - E;[(p /2) (1 + 28)]
+ nf(t pu)z/(l + 2t)] + 2y (2.8)
where
o, = (/w1 + (t/w)11"1/2 | vy = 0.5772156

Since this correlation involves exponential integral functions, it requires
relatively longer computational time when used in radiative transfer analyses
[18]. Based on the theoretical formulation of Edwards and Menard {8,9], Green
and Tien have proposed a piecewise correlation for NO in [25]. Results of
these correlations are compared with other theoretical and experimental results
in sections 4 and 5.

As discussed in [7,12,17], band absorptance relations possess several
limiting forms. At sufficiently low pressure path lengths (i.e., for u << 1),

the nondimensional total band absorptance is given by the linear limit as

A=au (2.9



At large path lengths (i.e., for u >> 1), the total band absorptance is

given by a logarithmic asymptote as

A=2fnu (2.

In the large path length limit most of the correlations reduce to [17]

A=1fnu+ Y (2.
Since Y = 0.5772, Eq. (2.11) usually is expressed as

A=fnu+1l (2.
For sufficiently large values of u Eqs. (2.11) and (2.12) reduce to
Eq. (2.10). 1In this study, Eq. (2.12) is employed for the band absorptance
in the large path length limit.

If the band absorptance results obtained by employing the line-by-line
model can be treated as exact results, then errors in using results of any
other formulation can be expressed by the relation

% =D = [(A - A)/A,] x 100 (2.

where KE = AE/A° and AE represents the line-by-line absorptance.

10)

11)

12)

13)

Results for different gases, as obtained by using Eq. (2.13) are presented in

section 5.



3. COMPUTATIONAL PROCEDURE

The procedure used for computing the spectral transmittance and to;al
band absorptance by employing the line~by-line and quasi-random band models

are described in detail in [6,19,26-28]. These are discussed here briefly.

The direct integration (line-by-line) method consists of calculating the
absorption coefficient, and then the transmittance, at a large number of fre-
quency locations within the spectral range of interest. Since the absorption
coefficient is a fast varying function of the frequency (varying by orders of
magnitude over the width of a line), it has to be evaluated at very closely
spaced locations. The total absorptioﬁ coefficient at any frequency location
is made up of contributions from a large number of lines in the vicinity of
that frequency. This method yields results with a high degree of accuracy.
However, the evaluation of total absorptance of a band with a large number of
lines requires a comnsiderably long computational time. Drayson [26] and Kunde
and Maguire [28] have proposed a scheme for the evaluation of transmittance
using this method. The procedure and computer program developed for this work
is a modification of the methods discussed in the above references. It makes
use of the Lorentz line profile for absorption coefficient and is relatively
simple and efficient. The entire procedure is discussed in detail in [19].

The line parameters needed in the calculation are obtained from McClatchey et al.
[29].

The quasi-random band model was introduced by Wyatt, Stull, and Plass [6].
A revised version of this model was applied by Kunde [27] to several planetary
atmospheric applications and satisfactory results were obtained. The procedure
and computer program used in the present work differs from that used in [27].
It is a highly simplified numerical integration scheme which requires considerably

less computational time. The procedure is discussed in detail in [19].



4. SPECIFIC COMPARISONS OF SPECTRAL
TRANSMITTANCE AND TOTAL BAND ABSORPTANCE

For the gases under consideration, experimental band absorptance results
are available in the literature [25,30,31]. For the 4.7u CO fundamental band
experimental results were obtained from Burch et al. [30] and Abu-Romia and
Tien [31]. For the 15p and 4.3u CO2 bands experimental results were obtained
from Burch et al. [30] and for the 5.35u NO band the results were obtained from
Green and Tien [25]. By employing the line-by-line (LBL) and quasi-random band
(QRB) models, specific results were obtained for exactly the same temperature,
pressure, and path length conditions for which experimental measurements were
available. For the same conditions, results were also obtained by employing
the continuous correlations of Tien and Lowder [10,11], Cess and Tiwari [10,16],
and Felske and Tien [14]. The correlation quantities required in the calculation
were obtained from [9-11]. Various theoretical and experimental band absorptance
results are compared in this section.

For the 4.7y CO fundamental band, the spectral range considered is between
1975-2265 cm~!. 1In this range, there are 254 spectral lines. The line para-
meters for this band were obtained from McClatchey et al. [29]. By employing
the LBL and QRB models, spectral transmittance results were obtained for this
band in the spectral range 2070-2220 cm™! for conditions T = 300°K, P, =51 mm
Hg, and X = 22.8 cm-atm [20]. A comparison of these with experimental results
(see Fig. 4.1) indicates that the LBL results are in good agreement with the
experimental values while QRB results exhibit appreciable differences (par-
ticularly in the P and R branches of the band). The integrated intensity of
the band was found to be 261 cm™? atm™! at T = 300°K. By employing the LBL and

QRB models and the continuous correlations, total absorptance results were
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obtained for this band at T = 300°K. The results are presented in Tables

4.1 and 4.2 along with other theoretical and experimental results. The com-
parison shows that the LBL and QRB results are in good agreement with the
experimental results (LBL being slightly better than QRB). Among other theo-
retical results, the results of HHG (Hashemi, Hsieh and Greif [24] provides

the best agreement with the experimental and LBL results. Among the results

of the correlations, it can be seen that, for the very low pressures, the Tien
and Lowder's correlation yields higher values of absorptance and Cess and Tiwari
and Felske and Tien's correlations show better agreement. For medium and high
pressures, however, Tien and Lowder's correlation yields better agreement while
Cess and Tiwari and Felske and Tien's correlations yield much lower values.

One may conclude, therefore, that use of the Tien and Lowder's correlation is
justified in radiative transfer analyses involving CO at relatively high
pressures.

The line parameters for the 15u CO2 fundamental band were obtained from
[29]. There are more than 7,200 lines in the spectral range (550-800 cm™!) of
this band. Spectral transmittances of this band were calculated by using the
LBL and QRB models for T = 300°K, Pe = 1100 mm Hg, and X = 1.55 cm-atm [20].
These are illustrated in Fig. 4.2 along with the experimental results. The
agreement between the three results is seen to be excellent. The integrated
intensity of the band was found to be approximately 252 em™? atm™! at T = 300°K.
For this band, total band absorptance results were calculated by employing the
LBL and QRB models and the continuous correlations at T = 300°K. The QRB
results for this band are given also by Kunde [27] and Young [32]. The results
are presented in Table 4.3 for six illustrative cases. Because of the large
computer time required for the LBL computation, only six sample cases were
considered. The time required by the QRB model was remarkably low (approxi-

mately a factor of 14 lower than the LBL computation) for this band. An
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inspection of the Table shows that the LBL results agree very well with the
experimental results. The present QRB results are higher than the experi-
mental values for very low ﬁressures, but they agree well at moderate and high
pressures. Young's results are consistently higher while Kunde's results
agree very well. Looking at the results of continuous correlations, it is
noted that Tien and Lowder's results are very low at lower pressures but
compare better at the higher pressures. The results of Cess and Tiwari and
Felske and Tien's correlation are consistently lower for all cases considered.
The line parameters for the 4.3u CO2 band were obtained also from [29].
There are approximately 5,565 lines in the spectral range (2220-2420 em™!) of
this band. Experimental and theoretical transmittance results for this band
are compared in Fig. 4.3 for T = 300, P, = 274 mm Hg, and X = 0.338 cm~-atm [20].
The agreement between the experimental and LBL results is seen to be excellent.
The QRB results, however, exhibit a slightly lower absorption. The integrated

2 atm"1 at

band‘intensity of this band was found to be approximately 2867 cm™
T = 300°K. By employing the LBL and QRB models and the continuous correlatiomns,
total band absorptance results were obtained for T = 300°K. For this band also,
only six sample cases were considered because of the large time requirement

of the LBL computations. No other theoretical results for this band seem to

be available in the literature. The results of present computations are pre-
sented in Table 4.4 along with the experimental values of Burch et al. [30].

The table indicates excellent agreement between the experimental and present
LBL results. The QRB results also are seen to compare very well. Among the‘
results of correlations, Tien and Lowder's results are seen to be lower for

low pressures but they compare better at high pressures. Cess and Tiwari and

Felske and Tien's results are again found to be consistently low.
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For the 5.35u NO band, the line parameters were obtained from the compi-
lation of Goldman and Schmidt [33]. The spectral range considered for this
band is 1750-2000 cm~! where there are approximately 1450 rotational lines.

The integrated intensity for this band was found to be 112 em~? atm~!. Goldman

2 1

and Schmidt used a value of S = 122 cm™° atm~" in the generation of line para-
meters. This difference can be attributed to the presence of additional lines
in the wings of the band beyond the above spectral range. The band correlation
parameters were obtained from Green and Tien [25]. The u and B values for this
band are listed also in [24]. By employing the LBL and QRB models and the cor-
relations, total band absorptance results were calculated for T = 300°K. These
are presented in Table 4.5 along with theoretical results of HHG [24] and
theoretical and experimental results of Green and Tien [25]. It is seen that
the present LBL results are in excellent agreement with the experimental values.
Also, except for a few cases, the present QRB results are within 10 per cent

of the experimental results. Among the correlation results, Tien and Lowder's
results, although lower, compare best with the experimental values. Cess and
Tiwari and Felske and Tien's correlations yield much lower values.

Results presented in this section consistently show that the LBL results
are in excellent agreement with the experimental values. In most cases QRB
results are better than results of any other theoretical formulation. The
results of various correlations agree with varying degree of accuracy depending
upon the nature of the gas. As such, one should be very careful in applying
a correlation to a particular application.

In order to give an idea of comparative computational time and cost
involved in calculating the total band absorptance, let us consoder, for example,
the case of 15y COp band results presented in Table 4.3. All these results were

obtained from programs run on the CDC-CYBER 175 machine. The time and cost for

computing these results by using the LBL and QRB models are as follows:
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Model Time (sec) C. R. Units Cost
LBL 550 2244 $58.00
QRB 40 180 $ 7.00

This indicates that the time, computer resource (CR) units and cosf in
dollars associated with QRB calculations are approximately an order of magni-
tude lower than for the LBL computations. This will be true for any band
which has a large number of (several thousands) lines. For bands which have
smaller number of lines, this difference is less dramatic. A single program
was used to compute the absorptance for all four bands (4.7u CO, 15u COZ’
4.3p COy, and 5.35u NO) using all three correlations (Tien and Lowder, Cess
and Tiwari, and Felske and Tien). The computer resource units used by this
program are, in general, a factor of 5 lower than those used by the QRB
program. It will be safe to assume, therefore, that the use of the various
correlations results in at least another order of magnitude reduction in

computer usage.
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5. GENERAL PARAMETRIC COMPARTISONS
OF TOTAL BAND ABSORPTANCE

General band absorptance results were obtained by employing the LBL
and QRB models and the continuous correlations of Tien and Lowder, Cess and
Tiwari, and Felske and Tien. The sources of various correlation quantities
and line parameters used in the computation are already mentioned in the

previous section. For different gases (4.7u CO, 15u CO,, 4.3u C02, and

23
5.35u NO), results were obtained for P = 0.01, 0.1, 1.0, and 10 atm and for

T = 300°K and 500°K. The results are presented in Tables 5.1 - 5.4 and also
are illustrated in Figs. 5.1 - 5.4. For CO fundamental band, results of all
formulations are illustrated in Figs. 5.1 for three different pressures. For
the sake of clarity, results for CO2 and NO bands are compared only for the
LBL, QRB, and Tien and Lowder's calculations and these are illustrated in
Figs. 5.2 - 5.4 for different pressures. If the results for one and ten
pressures were very close, then in some figures they are illustrated for

P =1 atm, and in others for P = 10 atm. In a pérticular application, if one
needs to compare all the results for any specific pressure and temperature,
then these results can be drawn from the data presented in Tables 5.1 - 5.4.

In order to calculate the per cent error in using a particular formulation,
the LBL results are treated as exact results in this section. Per cent errors
in total absorptance of various bands were calculated by employing Eq. (2.13).
These are illustrated in Figs. 5.5 - 5.8 for T = 300°K and different pressures.

For CO fundamental band results presented in Tables 5.1 and illustrated
in Figs. 5.1 and 5.5 show that the QRB values are in excellent agreement with
the exact (LBL) results except for very low pressures and small optical paths.

It is noted that all three correlations exhibit poor agreement with the exact

results at the very low pressure of 0.01 atm. At 0.1 atm, however, Cess and
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Tiwari, and Felske and Tien correlations yield better agreement than does
the Tien and Lowder correlation. At 1.0 atm, all three correlations yield
reasonable agreement, although Tien and Lowder correlation yields higher values
than the LBL results while the others yield lower values. At 10 atm, Tien
and Lowder correlation yields much better agreement than do the others..

For CO2 bands, general band absorptance results are presented in Tables
5.2 and 5.3, and are illustrated in Figs. 5.2, 5.3, 5.6 and 5.7. 1t is noted,
in.general that the LBL and QRB resﬁlts are in excellent agreement for; p>1.
Since CO2 bands contain a relatively large number of lines, the large pressure
limit for these bands is achieved at relatively low pressures (at about 2-5
atmospheres, depending on the temperature). Because of the nature of variation
of the Lorentz line widths with temperature and pressure, the LBL and QRB
results for p =1 and 10 atmospheres are closer at 500°K than at 300°K.

For 15u¢ CO, band, the QRB results are in excellent agreement with the

2
LBL results except for very low pressures and small optical paths (see Tables
5.2 and Figs. 5.2 and 5.6). Of the three correlations, the Tien and Lowder
correlation shows fair agreement with the exact results for the entire range

of physical conditions. The Cess and Tiwari, and, Felske and Tien correlatioms,
on the other hand, yield consistently lower values than the LBL results.

For the 4.3u CO2 band also, the QRB results show an excellent agreement
with the LBL results (see Tables 5.3, and Figs. 5.3 and 5.7). Among the
correlations, Cess and Tiwari, and Felske and Tien correlations exhibit much
better agreement with LBL results at lower pressures while Tien and Lowder
correlation yields much higher wvalues. At moderate and high pressures, however,

Tien and Lowder correlation shows much better agreement while others yield

results which are consistently lower.
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For the NO fundamental band the QRB results (see Table 5.4, and Figs.

5.4 and 5.8) show poor agreement with the LBL results for 0.0l atm and only
fair agreement at 0.1 atm. For 1.0 atm the agreement is good and it is
excellent at 10 atm. Tien and Lowder correlation yields poor agreement at
lower pressures and fair agreement at medium and high pressures. Cess and
Tiwari, and Felske and Tien correlations, on the other hand, yield consistently
lower values for the entire range of physical conditioms.

Results presented in this section indicate that, except for very low
pressures, the QRB results are in general agreement with the LBL results for
all bands under investigation. It is also noted that no one correlation can
be expected to yield accurate results for all gases under all conditions. Use
of the Tien and Lowder correlation is recommended for diatomic gases like CO
and NO at moderately high pressures. At low and moderate pressures and for
gases like C02, use of the Cess and Tiwari or Felske and Tien correlatioms

is recommended.



Table

5.1a Comparison of integrated absorptancesfor

CO fundamental band (T = 300 °K); Ap = LBL =
line-by-line results (exact), PD = [(E-Ag)/

ZE] x 100, QRB = quasi-random band results.

Integrated Absorptance, A= A/Ao (Nondimensional)

P | Opt.
(atm) | Path LBL QRB Tien & Lowder Cess & Tiwari Felske & Tien
u Ag A |® A PD A PD A | PD
0.01} 0.00256| 0.00543| 112 0.0078 | 205| 0.0052 | 103! 0.0058! 127
0.1 | 0.00923| 0.01865! 102| 0.0266 | 188 | 0.0252 | 173: 0.0254| 175
0.01 {1.0 | 0.04368| 0.06154| 41| 0.0490 | 12.2| 0.0947 117% 0.0895 | 105
| 10 0.17987| 0.19506! 8.5| 0.1882 | 4.61 0.3042 69 - 0.2859 ! 59
100 | 0.58160| 0.60158! 3.4| 1.0172 75, 0.8523 47 0.84611 45
1000 | 1.78416| 1.73142i -3.0| 2.9095 63 1.9810 | 11.0! 2.1683! 21.5
0.01| 0.00757| 0.00885; 16.9| 0.0096 | 26.8 | 0.0073 | -3.6 0.0087 | 14.9
0.1 | 0.04209| 0.04833' 14.8| 0.0692 64| 0.0453 | 7.6 0.0500 18.8
0.1 {1.0 | 0.17373| 0.17554 1.04| 0.2355 | 35.6| 0.2008 | 15.6  0.2030 16.8
10 0.58028 | 0.58258  0.4| 0.8169 41| 0.6591 | 13.6  0.6624 14.2
100 1.78141| 1.72112 -3.4| 2.4804 39 1.6692 | -6.3° 1.8043 1.3
1000 | 3.97998| 3.87159) -2.7 | 4.6890 | 17.8 | 3.2966 j-17.2 3.7985 ~4.6
0.01; 0.00984| 0.00991| 0.7| 0.0099 | 0.6 0.0086 -12.6° 0.0096| -2.4
0.1 | 0.08803! 0.08786) -0.2| 0.0927 | 5.3| 0.0659 i -25 0.0791}-10.1
1.0 |1.0 | 0.48446{ 0.47057| -2.9| 0.6032 | 24.5! 0.3573 | =26 0.4003 |-17.4
10 1.66303 | 1.58071] -5.0| 2.0257 | 21.8 | 1.2245 ~26.4 1.3594 |-18.3
100 | 3.92855| 3.80934| -3.0| 4.1443 | 5.5] 2.7822 | -29 | 3.2152 -18.2
1000 | 5.26491; 5.30060| 0.7| 6.4257 | 22! 4.7884 -9.1  5.4927| 4.3
! i ; :
0.01| 0.00989 | 0.00996| 0.7 | 0.0100 | 1.1} 0.0093 | -6.0; 0.0099; 0.1
0.1 | 0.09729| 0.09764{ 0.4| 0.0978 | 0.5, 0.0788 | -19, 0.0936| -3.8
10 1.0 | 0.83347| 0.81708| -2.0 | 0.8018 | -3.8, 0.4974 | -40. 0.6344| =24
10 3.34830 | 3.20311} -4.3| 2.9833 -10.9% 1.7959 | -46  2.1862| =35
100 | 5.03703| 5.04037{ 0.1 5.4062 | 7.3 3.8167 | =24 4.4318] -12
1000 | 5.72133| 5.726371 0.1 7.7268 35% 6.0608 5.9! 6.7392] 17.8
1




Table 5.1b Comparison of integrated absorptancesfor

CO fundamental band (T = 500 °K); Ap = LBL =
line-by-line results (exact), PD = [(&-Ag)/
Ag] x 100, QRB = quasi-random band results.

p opt. Integrated Absorptance, A= A/Ao (Nondimensional)

(atm) | Path LBL QRB Tien & Lowder Cess & Tiwari Felske & Tien
u Ag A |® A PD A PD A PD
0.01| 0.00230{ 0.00510| 122 | 0.0082 | 257 0.0055 | 139. | 0.0062 [ 170
0.1 | 0.00750| 0.01660 121 | 0.0319 | 325 0.0276 | 268 | 0.0281 | 275

0.01 | 1.0 | 0.03516| 0.05425| 54.3| 0.0622 | 76.2| 0.1059 | 201 | 0.1008 | 187
10 0.15025| 0.16728| 11.3| 0.2365 | 57.4| 0.3407 {127 | 0.3225 | 115
100 | 0.48996| 0.51513| 5.1} 1.1869 |l42 0.9432 | 92.5] 0.9466 | 93.2
1000} 1.50596| 1.48394| -1.5| 3.1517 |109 2.1441 | 42.4] 2.3711 | 57.4
0.01f 0.00732( 0.00854| 16.7! 0.0097 | 32.5| 0.0075| 2.5| 0.0089 | 21.6
0.1 | 0.03609| 0.04320| 19.7| 0.0743 {106 0.0484 | 34.1| 0.0541 | 49.9

0.1 | 1.0 | 0.14631| 0.15273| 4.4; 0.2811 | 92.1 | 0.2202| 50.5| 0.2253 | 54.0
10 0.49377| 0.50476| 2.2| 0.9604 | 94.5| 0.7262| 47.1] 0.7390 | 49.7
100 | 1.50476| 1.48069] -1.6; 2.7112 | 80.2 | 1.8105| 20.3| 1.9803 | 31.6
1000| 3.44152| 3.34125] -2.9; 4.9369 | 43.5 | 3.4992| 1.7} 4.0413| 17.4
0.01{ 0.00978| 0.00986| 0.8 0.0099 { 1.2 | 0.0088|-10.0| 0.0097 | -0.8
0.1 ! 0.08443] 0.08480! 0.4] 0.0940 | 11.2 | 0.0683| -19.1| 0.0822| -2.6

1.0 ! 1.0 @ 0.42424| 0.42122 -0.7} 0.6468 | 52.5 | 0.3799| -10.5] 0.4332 2.1
10 1.42162| 1.37998| -2.9 2.1977 | 54.6 | 1.3117| -7.7| 1.4771 3.9
100 | 3.41601| 3.31329, -3.0 4.3609 | 27.7 | 2.9431| -13.8| 3.4164 0.0
1000  4.39262' 4.38827 -0.1 6.6478 ' 51.3 | 4.9902 13.6 5.7045 29.9
0.01, 0.00990| 0.00995, 0.5, 0.0100 ; 1.0 ] 0.0099, 0.0, 0.0099 0.0
0.1 | 0.09705| 0.09722| 0.2: 0,0980 | 1.0 | 0.0799| -17.7] 0.0945| -2.6

10 1.0 | 0.80778] 0.79062; -2.1, 0.8112 | 0.4 | 0.5107| -36.7| 0.6609 | -18.2
10 3.08068| 2.94970 -4.3' 3.0463 | -1.1 | 1.8547| -39.8) 2.2818| -25.9
100 | 4.34955 4.34867) 0.0 5.4992 | 26.4 | 3.9222| -9.8| 4.5415 4.4
1000 4.47254| 4.47258] 0.0 7.8242 | 74.® | 6.1887| 38.4 6.8502| 53.2

. |
H 1 :




Table 5.2a Comparison of integrated absorptances for
the 15u COp band (T = 300°K); Ay = LBL =
line-by-line results (exact), PD = [(A-Ag)/

KE] x 100, QRB = quasi-random band results.

28

P Opt. Integrated Absorptance, A = A/A  (Nondimensional)

(atm) Path

LBL QRB Tien & Lowder Cess & Tiwari Felske & Tien

u A X } PD A PD A PD A PD

0.01] 0.00721 0.01047 45.0 0.0086 19.3 0.0059 [18.2 0.0068 -5.7

0.1 0.03652 0.04466 22.3 0.0391 7.1 0.0309 |-15.4 0.0318 | -12.9

0:01 1.0 0.14612 0.17387 19.0 0.0829 -43.0 0.1212 (17.0 0.1166 { -20.2

10 0.49519 0.57559 16.2 0.3111 -37.0 0.3911 §21.0 0.3738 | -24.0

100 1.46054 1.59837 9.4 1.4155 -3.1 1.0658 (27.0 1.0846 § -26.0

1000 3.48069 3.61350 3.8 3.4548 -0.7 2.3557 }-32.0 2.6355 | -24.3

0.01{ 0.00958 0.00970 1.3 0.0097 1.3 0.0076 +20.6 0.0090 -6.0

0.1 |} 0.07152 0.07628 3.9 0.0758 6.0 0.0494 }-30.9 0.0556 | -22.3

0.1 1.0 0.31441 0.34072 8.4 0.2975 ~5.4 0.2270 +27.8 0.2332 | -25.8

10 1.14415 1.20139 5.0 1.0114 -11.6 0.7497 }34.0 0.7662 } -33.0

100 3.12546 3.17099 1.5 2.7893 -10.8 1.8592 {40.0 2.0415 { -35.0

1000{ 5.69650 5.81050 2.0 5.0200 -11.9 3.5679 #37.0 4,1229 4 -28.0

0.01] 0.00983 0.00997 1.4 0.0099 0.7 0.0087 }11.5 0.0097 -1.3

0.1 0.08711 0.09288 6.6 0.0933 7.1 0.0670 {23.0 0.0805 -7.6

1.0 1.0 0.54372 0.59109 8.7 0.6227 14.5 0.3672 -32.0 0.4145 1 -23.7

10 2.14810 2.10968 -1.8 2.1013 -2.2 1.2624 {-41.0 1.4102 4§ -34.0

100 4.,81242 4.84289 0.6 4.2393 -11.9 2.8524 }-41.0 3.3032} -31.4

1000] 7.32213 7.28145 -0.6 6.5232 -10.9 4.8766 i~33.0 5.5859; -23.7

0.01} 0.00985 0.00994 0.9 0.0100 1.5 0.0092 -6.6 0.0099 0.5

0.1 0.09422 0.09579 1.7 0.0977 3.7 0.0783 |-16.9 0.0932 -1.1

10 1.0 0.70662 0.72521 2.6 0.7962 12.7 0.4906 1-31.0 0.6211} -12.1

10 2.96051 2.94170 -0.6 2.9473 -0.4 1.7662 {-40.0 2.1389; -28.0

100 5.56670 5.64848 1.5 5.3540 ~3.8 3.7634 [-32.4 4.37501 -21.4

1000} 8.05953 8.04364 -0.2 7.6724 -4.8 5.9961 |-25.6 6.68181 -17.1




Table 5.2b Comparison of integrated absorptancesfor
the 15u CO, band (T = 500 °K); Ay = LBL =

line-by-line results (exact), PD = [(A-Ap)/

KE] x 100, QRB = quasi-random band results.

p opt. Integrated Absorptance, A= A/Ao (Nondimensional)
(atm) | Path LBL QRB Tien & Lowder Cess & Tiwari Felske & Tien
u Ag A |® A PD A PD A PD
0.01| 0.00792 { 0.01609 (103 0.0089 12.4 | 0.0062 |-21.7] 0.0072 -9.1
0.1 | 0.04820 . 0.07974 | 65.4 | 0.0453 | -6.0 | 0.0336 |-30.3| 0.0350 | -27.4
0.01 | 1.0 | 0.21458 " 0.29923 | 39.4 | 0.1040 |-51.5| 0.1348 |-37.2| 0.130S | -39.0
10 0.74696 | 0.94482 | 26.5 | 0.3849 | -~48.5 | 0.4364 |-41.6| 0.4206 | -43.7
100 | 2.06163 § 2.35931 | 14.4 | 1.6133 | -21.7 | 1.1729 | -43.1| 1.2078 | -41.4
1000 | 4.32747 - 4.61635 6.7 { 3.7015 | -14.5 | 2.5339 | -41.4| 2.8584 | -33.9
T 0.01| 0.00974 = 0.00990 | 1.6 |0.0097 |-0.4 | 0.0078 |-19.9| 0.0091 | -6.6
0.1 | 0.08027 | 0.08627 7.5 [0.0800 | -0.3 0.0524 | -34.7| 0.0598 | -25.5
0.1 1.0 | 0.43641 | 0.49339 | 13.1]0.3484 |-20.2 | 0.2477 |-43.2| 0.2577 | -41.0
10 1.62277 | 1.79262 | 10.5 |1.1704 | -27.9 | 0.8226 | -49.3| 0.8519 | -47.5
100 | 4.03264 | 4.27449 6.0 | 3.0228 | -25.0| 2.0080 |-50.2| 2.2294 | -44.7
1 1000 | 6.45418 § 6.66196 3.2 |5.2663 | -18.4 | 3.7743 | -41.5| 4.3649 | -32.4
- 1 0.01| 0.00989 ; 0.01000 1.1 {0.0099 0.1| 0.0088 |{-11.0| 0.0098 -0.9
, 0.1 | 0.09112 : 0.09518 4.5 | 0.0945 3.7 | 0.0693 | -23.9{ 0.0835 -8.4
1.0 1.0 | 0.62061 | 0.69028 | 11.2 |0.6641 7.0 | 0.3896 | -3712} 0.4478 | -27.8
| 10 2.62495 | 2.79780 6.6 | 2.2701 | -13.5| 1.3495 | -48.6| 1.5289 | -41.8
100 | 5.45036 | 5.58857 2.5 14.4523 | -18.3 | 3.0123 | -44.7| 3.5019 | -35.7
1000 | 7.67489 | 7.75469 1.0 }6.7417 | -12.1| 5.0764 | -33.9} 5.7935 | -24.5
0.01| 0.00988 | 0.00995 0.7 | 0.0100 1.2 | 0.0093 -5.9{ 0.010C 1.2
0.1 | 0.09473 | 0.09624 1.6 [ 0.0979 3.3 ] 0.0794 | -16.2! 0.0941 -0.7
10 1.0 | 0.72878 | 0.75358 3.4 | 0.8072 10.8 | 0.5047 | -30.7| 0.6489 | -11.0
i 10 3.24084 | 3.28814 1.5 | 3.0192 -6.8| 1.8281 | -43.6} 2.2381 | -30.9
100 | 6.06941 | 6.08042 ; 0.2 |5.4590 | -10.1 | 3.8745 | -36.2! 4.4923 | -26.0
1000 | 8.03103 ! 8.05471 § 0.3 ]7.7821 -3.1| 6.1308 | -23.7: 6.8004 | -15.3
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Table 5.3a Comparison of integrated absorptances for

€O 4.3u band (T = 300°K); A; = LBL = line-
by-line results (exact), PD = [(K-KE)/KE] X
100, QRB = quasi-random band results.

30

P opt. Integrated Absorptance, A = A/A, (Nondimensional)
(atm) Path
LBL QRB Tien & Lowder Cess & Tiwari Felske & Tien
3

u g A | ®p A PD A PD A PD
0.01; 0.00620 0.00914 47.0 0.0092 48.0 0.0066 6.51 0.0055 -11.3
0.1 0.02981 0.03704 24.0 0.0544 82.0 0.0377 26.0( 0.0401 354.5

0.01 1.0 0.12012 0.13533 12.7 0.1425 18.6 0.1567 30.01{ 0.1542 28.4
10 0.42952 0.45536 6.0 0.5157 20.0 0.5093 18.6] 0.4977 15.9
100 1.36398 1.37231 0.6 1.9162 40.0 1.3407 -1.7] 1.4050 3.0
1000{ 3.48728 3.35253 -3.9 4.0602 16.4 2.8021 -19.6} 3.1926 -8.5
0.017 0.00950 0.00959 1.0 0.0099 4.2 0.0083 -12.61 0.0095 0.0
0.1 0.06973 0.06966 -0.1 0.0876 25.6 0.0593 -15.0§ 0.0697 0.0

0.1 1.0 0.31680 0.31561 | -0.4 0.4751 50.0 | 0.2995 -5.51% 0.3220 1.6
10 1.16636 1.13011 -3.1 1.5749 35.0 1.0083 -13.6{ 1.0792 -7.5
100 3.24933 3.06648 -5.6 3.5707 9.9 2.3740 ~27.0} 2.6963 -17.0
1000f{ 5.52244 5.47292 -0.9 5.8360 5.7 4.2643 -22.8{ 4.9229 -10.9
0.01} 0.00994 0.00999 0.5 0.0100 0.6 0.0091 -8.4; 0.0099 -0.4
0.1 0.09499 0.09464 -0.4 0.0969 2.0 0.0754 -21.01 0.0905 ~4.7

1.0 1.0 0.67912 0.64769 ~4.6 0.7613 12.1 0.4561 -32.81 0.5570 -18.0
10 2.55122 2.35619 -7.6 2.7390 7.4 1.6189 -36.53 1.9140 -25.0
100 4.89961 4.79504 -2.1 5.0633 3.3 3.4993 -28.6 % 4.0822 -16.7
1000i 6.92736 6.85839 -1.0 7.3705 6.4 5.6751 -18.0¢ 6.3861 -7.8
0.01; 0.00989 0.00996 0.7 0.0100 1.1 0.0094 -5.0j 0.0099 0.1
0.1 0.09752 0.09808 0.6 0.0982 0.7 0.0824 -15.5§ 0.0963 -1.3

10 1.0 0.85205 0.84544 -0.8 0.8244 -3.2 0.5454 -36.03 0.7334 -14.0
10 3.44692 3.39145 -1.6 3.1404 -8.9 2.0124 -42.0}% 2.5626 -25.6
100 5.58567 5.60593 0.4 5.6428 1.0 4.2069 -24.7 t 4.8188 -13.7
1000 8.21852 8.26854 0.4 7.9753 -3.0 6.5340 -20.5} 7.1321 -13.2




Table 5.3b

Comparison of integrated absorptancesfor

the CO, 4.3u band (T = 500 °K); KE = LBL =

line-by-line results (exact), PD = [(A-Ap)/

KE] x 100, QRB = quasi-random band results.

Integrated Absorptance, A= A/Ao (Nondimensional)

P Opt.

(atm) | Path LBL QRB Tien & Lowder | Cess & Tiwari | Felske & Tien

u Ag A |PD A PD A PD A PD
0.01} 0.00650 | 0.01260 {93.8 | 0.0094 44,6 | 0.0069 6.21 0.0081 % 24.6
0.1 | 0.03421 | 0.05100 [49.0 | 0.0605 76.8 { 0.0407 19.0{ 0.0439 | 28.3
0.01 | 1.0 | 0.14808 | 0.19382 |30.9 | 0.1753 18.4 ] 0.1732 17.0{ 0.1722 ]} 16.3
| 10 0.54366 | 0.64038 |17.8 | 0.6238 14.7 | 0.5651 3.9] 0.5581 2.7
100 | 1.65293 | 1.75561 | 6.2 | 2.1351 29.2 | 1.4654 | -11.3| 1.55483 { =5.9
1000 3.64266 | 3.63333 |-0.3 | 4.3089 18.3 | 2.9942 | -17.8] 3.4299 | -5.8
0.01} 0.00953 | 0.00972 | 2.0 | 0.0099 3.9 | 0.0084 | -11.9} 0.0096 0.7
0.1 | 0.07278 | 0.07628 | 4.8 | 0.0900 23.7 { 0.0620 | -14.8}| 0.0737 1.3
0.1 1.0 | 0.36531 | 0.37722 | 3.3 | 0.5281 44.6 | 0.3223 ! -11.8} 0.3519 ; -3.7
+ 10 1.36334 | 1.37333 | 0.7 { 1.7539 28.6 § 1.0924 | -19.9} 1.1863 {~13.0
| 100 | 3.42711 | 3.37961 |-1.4 | 3.8009 10.9 | 2.5348 | -26.0% 2.9016 !-15.3
1000 | 5.04762 | 5.07189 | 0.5 | 6.0731 20.3 | 4.4730 | -11.4| 5.1532 2.1
§ 0.01) 0.00994 | 0.01000 | 0.6 | 0.0100 w 0.6 | 0.0092 -7.4| 0.0087 {-12.5
| 0.1 | 0.09507 | 0.09564 | 0.6 | 0.0974 i 2.5 ) 0.0769 |-19.1| 0.0920 ; -3.2
1.0 { 1.0 :{ 0.69023 | 0.69176 | 0.2 | 0.7805 | 13.1 | 0.4737 |-31.4| 0.5890 :-14.7
10 2.59380 | 2.48454 |=4.2 | 2.8499 | 9.9 | 1.6934 |-34.7| 2.0261 ;-21.9
100 | 4.47530 | 4.45886 {-0.4 | 5.2159 16.5 1 3.6329 | -18.81 4.2326 ; -5.4
1000} 5.73011 | 5.77022 | 0.7 | 7.5287 31.4 ! 5.8376 1.9]6.5380 ; 14.1
0.01 0.00991 | 0.00997 | 0.6 | 0.0100 0.9 ‘ 0.0094 -5.1| 0.0100 § 0.9
0.1 | 0.09762 | 0.09802 § 0.4 | 0.0983 0.7 ! 0.0829 |-15.1| 0.0966 § -1.0
10 1.0 | 0.84481 | 0.83817 |-0.8 | 0.8249 -2.4 | 0.5514 | -34.7)0.7463 §—11.7
10 3.23577 | 3.19191 [-1.4 | 3.1438 2,81 2,0407 1-36.9] 2.6194 3-19.0
100 | 4.81965 | 4.84167 | 0.5 | 5.6481 17.4 i 4.2583 |-11.6| 4.8663 f 1.0
1000 | 6.33157 | 6.37361 ! 0.7 | 7.9809 26.0 | 6.5966 4.2 17.1799 ; 13.4

)




Table 5.4 Comparison of integrated absorptances for NO
fundamental band (T = 300°K); Ag = LBL =
line-by~line results (exact), PD = [(K—KE)/
KE] x 100, QRB = quasi-random band results.

32

(Nondimensional)

P Opt. Integrated Absorptance, A = A/A

(atm) | Path

LBL QRB Tien & Lowder Cess & Tiwari | Felske & Tien

u Eg A PB A PB A PB X PB

0.01} 0.00607 | 0.01306 | 115.0] 0.0068 12.0f{ 0.0045 1-26.0| 0.0032 {-47.0

0.1 | 0.02375 | 0.03955 67.0{ 0.0180 [-24.0{ 0.0208 {-12.4§ 0.0204 |-14.1

0.01 | 1.0 |{ 0.08086 | 0.13251 64.0; 0.0303 |-63.0{ 0.0756 -6.5{ 0.0706 {-12.7

10 0.28949 | 0.43065 49.0/ 0.1181 }-59.0{ 0.2420 |{-16.4} 0.2248 |-22.0

100 | 0.92456 | 1.25337 35.0; 0.7263 |-21.5} 0.6930 [-25.0} 0.6746 [~-27.0

1000 | 2.55159 | 3.16153 24.0{ 2.4413 -4.3] 1.6805 {-34.0} 1.7994 {-29.0

0.01] 0.00894 | 0.00977 9.3 0.0093 4.0{ 0.0068 ;-24.0f 0.0067 {-25.0

0.1 | 0.06350 | 0.07755 22.0/ 0.0578 -9.0f 0.0394 |[-38.0{ 0.0422 |~-34.0

0.1 1.0 { 0.25462 | 0.34331 35.0; 0.1600 {-37.0} 0.1657 }{-35.0} 0.1639 }{-36.0

10 0.86630 |} 1.12599 30.0; 0.5737 |-34.0{ 0.5396 {-38.0! 0.5304 {~39.0

100 | 2.51921 | 3.06630 22.0{ 9.0365 |-19.0} 1.4088 [-44.0f 1.4866 [-41.0

1000 5.27990 | 5.75481 9.0; 4.1978 |-20.0{ 2.9078 |-45.0{ 3.3235 }-37.0

0.01} 0.00991 | 0.01001 1.0} 0.0099 -0.1} 0.0083 1:-16.0{ 0.0095 : -4.1

0.1 | 0.09378 | 0.09655 3.0f 0.0890 -5.1} 0.0608 |-35.0} 0.0719 {-23.0

1.0 1.0 | 0.63506 | 0.72239 14.0f 0.5047 1-21.0f 0.3121 {~-51.0! 0.3383 }{-47.0

10 2.23890 }2.63281 18.0¢ 1.6738 {-25.0f 1.0546 :-53.0y 1.1378 |-49.0

100 | 5.04365 | 5.40347 7.1 3.6985 |-27.0f 2.4628 |}-51.0}{ 2.8097 {-44.0

1000{ 6.79166 | 7.14657 5.2 5.9678 |-~12.0{ 4.3799 1-36.0] 5.0510 {-26.0

0.01} 0.00991 | 0.00997 0.6/ 0.0100 0.9/ 0.0091 -8.1} 0.0099 { -0.1

0.1 | 0.09792 | 0.09851 0.6 0.0972 ~0.7} 0.0763 |}-22.0j 0.0914 | -6.6

10 1.0 | 0.87160 | 0.87741 0.7} 0.7725 {-11.0{ 0.4660 }-47.0} 0.5750 |-34.0

10 3.98050 | 4.04590 1.6 2.8026 |-30.0f 1.6608 }-58.0] 1.9767 |-50.0

100 | 6.22197 | 6.41691 3.1 5.1503 {-17.0t 3.5744 [-43.0{ 4.1673 |-33.0

1000} 7.41852 | 7.64331 3.0 7.4606 0.6y 5.7666 {-22.0} 6.4721 {-13.0
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6. CONCLUSIONS

It has been demonstrated that the line-by-line model is probably
the best theoretical approach to calculate the spectral transmittance and
total absorptance of a vibration-rotation band. Although it requires a
considerably long computational time, the results obtained by this model
are in excellent agreement with the available experimental results. The
quasi-random band model requires relatively less computational time aﬁd
yields accurate results in most cases. As such, use of these theoretical
models is suggested for radiative transfer analysis requiring high degree
of accuracy.

Relative validity of various correlations (Tien and Lowder, Felske and
Tien, and Cess and Tiwari), under different pressure and path length condi-
tions, has been established. These correlations require significantly less
computational time and yield results with varying degree of accuracy
depending upon the nature of the gas. The computer time required by the
Felske and Tien correlation is relatively longer than Tien and Lowder, and
Cess and Tiwari correlations. Results of specific and general parametric
comparisons indicate that use of the Tien and Lowder correlation is justified
to all gases under investigation at relatively high pressures. Use of the
Felske and Tien, and Cess and Tiwari correlations is recommended for lower and

moderate pressures.
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